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Elastic behavior in a supercooled liquid: Analysis of viscoelasticity using an extended
mode coupling model
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The transverse current correlations are analyzed using the formalism of extended mode coupling theory. The
undercooled liquid can sustain shear waves up to a minimum wave number. With the increase of density this
wave number decreases, indicating a growing length scale that is related to the dynamics. The speed of the
propagating shear waves goes to zero approaching a critical wave number. The maximum wavelength shows
an initial enhancement approaching the mode coupling transition and finally grows at a slower rate as the sharp
transition is cut off.

PACS numbdss): 64.60.Cn, 64.70.Pf, 47.35i

The solidlike nature of a supercooled liquid is often ex-sity, through a mode coupling calculation. The extent of
pressed in terms of a finite shear modulus. Thus, while &lowing down in relaxation near the instability is determined
low-density fluid cannot sustain a shear stress, in an elastitom the wave vector dependence of the mode coupling con-
solid the stress is proportional to the strain produced. Théributions in the theory. It was shown that the longest wave-
viscoelastic response of the supercooled liquid is formulatetength for the propagating shear waves that the undercooled
in terms of a combination of the above two behaviors. Theoliquid can sustain grows with density. This length scale,
ries of the liquid state which only include short-time or un- which is linked to a characteristic solidlike behavior of the
correlated collision§l1,2] in a liquid therefore do not account supercooled liquid, follows a power law divergence with an
for the appearance of propagating shear waves. By formulagxponent of 1.2 in the vicinity of the ideal glass transition
ing the the dynamics in a dense liquid in terms of thedensity. With the proper approximation to the memory func-
memory functio{ 3—5], the propagating shear waves at largetion in terms of the density correlation function computed
wave numbers are accounted for. More recent wikfiave  from extended mode coupling models, the divergence of the
considered the problem of long-time tails similar to the workcharacteristic length scale is removed.
by Kirkpatrick [3] with inclusion of coupling to current cor- In the formalism of the mode coupling theories the den-
relations. sity correlation function is the key quantity in terms of which

The memory effect accounts for the dynamic correlationghe glassy relaxation is formulated. The Laplace transform of
that build up at high density and are expressed by the modge density correlation functiog(q,t) normalized with re-
coupling terms. In recent years the self-consistent mode couspect to its equal time value is defined as
pling theory (MCT) [7] for glassy relaxation has been pro-
posed by considering the contribution to the transport coef- . P ,
ficients coming from the nonlinear coupling of collective z,/;(q,z)=—if dt e*'y(a.t) (1)
modes in a liquid. In the kinetic approach to glassy behavior, 0
the widely studied model is obtained from a self-consistent .
mode coupling approximation of the memory function in @nd can be expressed in the fof&]
terms of slowly decaying density fluctuations. This model iR
undergoes a dynamic transition to an ideal glassy phase be- WG.2)= z+i'(q,2) _
yond a critical density while the structure of the liquid does ' ZZ—Q§+iFR(q,Z)[Z+iy(q,Z)]
not undergo any drastic change. In the ideal glassy phase the
density correlation function freezes to a nonzero long-timeQ2,=q/\BmYq) corresponds to a characteristic micro-
limit. However, a study of the equations of nonlinear fluctu-scopic frequency for the liquid-state dynamics whgris the
ating hydrodynamic$8] shows that the dynamic feedback Boltzmann factor andn is the mass of the fluid particles.
mechanism causing a divergence of the viscosity is cut off a¥he corresponding memory function, the generalized longi-
a result of the coupling of density fluctuations to current in atudinal viscosityI'?(q,z) =To(q) + I'm(q,2), has a parl’y
compressible fluid. In these so-called extended mode couelated to bare or short-time dynamics with uncorrelated col-
pling models[8—11] it has been shown that the dynamic lisions and the mode coupling contributidh,,. signifying
transition is removed. The relaxation times keeps increasinghe correlated motion in the dense liquid:
but the density correlation function finally decays to zero in
the long-time limit. The ideal glassy phase predicted within . R R
the simple mode coupling approximation has solidlike prop- ch(q,t)=f VK Ky ]k, t) r(Kq 1)
erties and it can support propagating shear waves at all
length scales. In a recent wofk?2] the behavior of propa- oL
gating shear waves in the supercooled liquid was analyzedyhere k;=q—k. The vertex function for the longitudinal
taking into account the proper structural effects at high denviscosity is given by
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VLKK ]_L[ oK)+ Uk c( kO T2S(K) S K 4 tion of the density correlation functio(q,t) from Eq.(2).
K=o mtY oK) +uskic(k) 1°S(K)S(ky), (4) | a simplified model where the quantity is ignored, the
density autocorrelation function freez¢g] to a nonzero
whereu=q-k andu;=q-k;, the dot product of the corre- Vvalue for densities above a critical valug. For a hard
sponding unit vectors. Here(k) is the direct correlation Sphere system whose static structure factor is approximated
function related to the static structure facgfk) through the by the Percus-YevickKPY) [16] solution with the Verlet-
Ornstein-Zernike relatiors(k)=[1—nc(k)]~%. The quan- Weiss (VW) [17] correction this takes place at a critical
tity y(q,2) on the right-hand sidéRHS) of Eq. (2) plays a  Value of the packing fraction* =0.525. We focus here our
crucial role in determining the asymptotic dynamicsylfs study on the densities above the critical density correspond-
ignored, the simple mode coupling approximation for theing to the dynamic transition to the ideal glassy phase. At
memory function obtains a sharp transition to an ideal glassfese densities in the simple MCT there will be complete
phase beyond a critical density, with the density correlatiorfreezing at all length scales. To investigate the nature of the
function developing a /pole. This model has been widely Shear waves at small wave numbers we compute the memory
studied[13] for the dynamics of supercooled liquids and funcgon in terms of the density correlation function Fhat is
involves a transition to an ideal glassy phase beyond a critiobtained here from the extended MCT. For analyzing the
cal density. However, with the presenceypfit high density ~nature of the shear waves the small wave vector region be-
whenTR gets large, the pole shifts to £4iy). It has been COMes more important with increasing density. However, in
demonstrated8,10] that in the smallj and -« limit, y ~ COmMputation of the mode coqpllng mte_grals the large wave
~g?. This gives rise to a diffusive decay of the densityveCtor part c_ontnbutes;/(q,_t) is appr(_)X|mated here by the
correlation restoring ergodicity over the longest time scale. A'€sult given in Eq(5) obtained both in Refg8] and[18].
formal expression was obtained in RES] for the quantityy ~ Since the value off(q,t in the initial times is mainly con-
using nonperturbative analysis. For the calculations here weibuting to the cutoff function, we compute thefrom the
use the one-loop results in the simplest form, in the siall- simple model without the cutoff mechanism and use its value
o limit: in the hydrodynamic limit to compute the final decay of the
density correlation function. For smatjo=<1, the cutoff
. N part g?y~qg2. To compute the transverse autocorrelation
Pk, ) h(k,1). function for different wave numbers we use the standard
(5) form [19,2Q for the mode coupling contribution to the gen-
eralized shear viscosity or the memory function:

, [ dk ulu up
V(QJ):%J Ws(k)s(kl)E E+k_1

ip refers to the time derivative of the functiof(q,t). Here

dk
1/(0,\2 t) = n J K) — c(K-)12K2
Y o U_:) | M 00 = 550 | ek~ oK)
—u2 (K "
wherev is the thermal speed of the particles. Here the cou- X(1=u) ke, D (k). @)

plings to the transverse correlations are ignored to keep the

analysis simple. The quantity provides a mechanism that For the small wave vector an expansionjifs used to com-
cuts off the sharp transition of the fluid to an ideal glassyPute the memory function that is used in the calculation of
phase. To leading order it is @(kgT) and is an effect of the transverse autocorrelation function for different values of
the coupling of the density and current correlations in thethe wave number. From the study of the dynamics a wave
compressible fluid. The shear relaxation in a fluid is studiedumberdy is identified such that witly>q, the relaxation

by analyzing the transverse autocorrelation funciig(m,t) of transverse current correlation is oscillatory, indicating that

Wh|Ch is expressed in the Laplace transformed form the System sustains shear waves Up to this wave number. For
wave vectors smaller thag, the decay of the correlation
- 1 function is no longer oscillatory an@ never goes negative.
$(a.2)= z+i7%q,2) ®  In order to make a guantitative estimate of the crossover

wave number we have adopted the procedure outlined for the

in terms of the memory function or the generalized sheacalculation with the simplified mod¢lL2], namely, extrapo-
viscosity 77(q,2) = 7o+ 7md(0,2), Where 7, is the short- lating to zero the inverse of the tintg for which the trans-
time or bare part arising from uncorrelated binary collisionverse autocorrelation function goes negative at a given wave
of the fluid particles. For the dense fluid at small enoughvectorg. In Fig. 1, we show the behavior of the speed of
length scalegi.e., large enougly) the memory effects are shear waves vs wave vector for reduced density®
important; a damped oscillatory mode the shear wWavel5| =1.08. The unit chosen is in terms of the Enskog titae
is obtained. The mode coupling contribution fgf,. takes [15] and the hard sphere diameter As the critical wave
into account the cooperative effects in the dense fluids andumber is approached the speed of the shear waves goes to
has contributions from the coupling of the hydrodynamiczero. For large wave number the speed of the shear wave
fields. In the supercooled liquid the density fluctuations ar@eaches its hydrodynamic value which is equal\ié../p
assumed to be dominant ang,. is expressed self- whereG, is the high-frequency limit of the shear modulus.
consistently in terms of the density autocorrelation functionsUsing this limiting value of the shear wave speed we can

The time evolution for the transverse correlation functionthus compute the shear moduli&l] with the only input as
¢(q,t) is solved forg small, with a self-consistent evalua- the structure of the liquid. This is relatgd] to the short-time
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FIG. 1. The speed of shear wave in unitscdt: (see text vs FIG. 3. The wave numbaef, (defined in textin units ofo~* vs
wave numbeko at densityno®=1.08. the packing fractiony.

value of the memory function. In Fig. 2 the wave vector can be identified and it shows a change in its growth pattern
dependence of cutoff function(q,0)/q® is shown for the  around the mode coupling instability. For smala value of
small wave vector ranggo<1 for the packing fractiony  the quantityy has been obtained through a proper analysis of
=0.57. The constant value refers to the diffusive mode in thehe nonlinear fluctuating hydrodynamics equations and we
hydrodynamic limit. In Fig. 3 the variation af, with pack-  extrapolate this form to a larggewith simple approximations
ing fraction »(=mno?/6) is shown for a system of hard to estimate it. The present version of extended MCT uses the
spheres. As the critical packing fraction 0.525 is approache#lydrodynamic form and is being used to study the nature of
the observed length scalg, tends to diverge, witly, be-  the shear waves at small wave numbers. The dynamic insta-
coming small. However, as the density is further increasedbility that has been called the ideal glass transition is specific
the approach to the sharp transition is cut off and a weaketo the self-consistent mode coupling model. In a recent work
enhancement takes place. it has been argued that the final relaxation of the density
The solidlike nature of undercooled liquids has also beercorrelation isq independent. The feedback mechanism re-
observed from transverse sound mofi28]. Mountain has sponsible for the dynamic transition ig independent—
observed 23] a similar behavior of propagating shear waveshowever, the exact density at which the mode coupling tran-
from molecular dynamics simulations of fragile liquids sition occurs is determined by the mode coupling integrals
which are also the systems where the mode coupling modeknd hence the structure factor of the supercooled liquid that
apply. This length scale of maximum wavelength for propa-is used an input in the theory. In E¢R) when the cutoff
gating shear waves observed from molecular dynamics simuunction vy is ignored, for smallg, if the viscosity is large
lations grows indefinitely approaching the glass transition. Irenough so that<D(0)q?, the central viscoelastic peak will
the present work we have demonstrated that for the selfhave ag-independent width given b ~1(0) whereD is the
consistent mode coupling model such a growing length scalgiscosity divided by the density factor. However, when the
mode coupling equations are solved with a realistic structure
factor one sees that this width goes to zergyat=0.514[7]
with a Percus-Yevick structure factor. Thus the presence of
the y term is crucial in the ergodicity restoring process over
the longest time scale. It was shown in Ré] that to lead-
ing order ing, y~q?, giving rise to a diffusive process in the
supercooled liquid. We would also like to point out here that
v going to zero withq approaching zero is also required
from hydrodynamics. The same redul8] was also obtained
in Ref. [10]. Beyond the hydrodynamic regime, the central
peak has a width independent gf commonly called the
Mountain peaK24], which is highly non-Lorentzian, reflects
faster processes, and does not play a crucial role here. The
coupling to thermal fluctuations is also ignored in the formu-
lation with the presumption that the density fluctuations are
0001 . . . . the key quantity. We have also not taken into account the
° coupling to other slow modes that arises in the glass forming
liquids due to the complexity of molecules or properties re-
FIG. 2. The cutoff functiony(q,0)/g? in units of o?/tz on a  lated to orientational degrees of freed§#b] or an explicit
log,, scale vs wave vectayo. account of hopping processé¢$l]. While there can be a
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more involved formalism of the mode coupling terms, the In a viscoelastic theory29] a phenomenological param-
present work demonstrates that the simplest mode couplingter is introduced to describe a frequency-dependent shear
terms with density fluctuations are crucial in understandingviscosity and using a simple exponential time dependence in
shear waves. the transport coefficient one can obtain propagating shear
The change of the nature of the shear wave indicated heigaves in terms of this relaxation parameter. On the other
is reminiscent of what happens in a dense fl{26,27] at hand, we have considered a theoretical model which is ob-
finite wave vectors when the propagating sound modes bdained from first principles. It includes as an input only the
come diffusive. Although in the latter case it is purely g Static structure factor of thiquid. An identical model has
structural effect, the change of the propagating modes to gréady been used earlier by the present author to investigate
diffusive mode is qualitatively similar. In the present casell'® nature of the supercooled liquid dynamics. The growing

the change in the nature of shear waves occurs as a result Igfgth scale follows very naturally from the feedback of den-

. : : y fluctuations andwithout any input parameters being
the mterpla_y petween. structure and Qynam|cs. It is aISOused We have used the extended mode coupling model to
worth mentioning at this point that it will not be correct to

. . investigate the wave vector dependence in the elastic re-
simply relate this to very slow transverse sound modes near

wave vectors approaching the critical value. We have diss ponse of the supercooled liquid. The length scale is related

cussed here the shear mode from the transverse current C(’g?_the dynamic behavior of the system and is representative

. : . o of the distance over which the supercooled liquid does have
relation functions for an isotropic liquid. In the case of trans-

verse sound modes, on the other hand, one needs to discu(_:'srlc,ough structure to sustain propagating shear waves.

really the transverse part of displacement fields introduced as The author acknowledges support from NSF Project No.
extra slow modes or Goldstone modes]. INT9615212.
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