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Elastic behavior in a supercooled liquid: Analysis of viscoelasticity using an extended
mode coupling model

Shankar P. Das
School of Physical Sciences, Jawaharlal Nehru University, New Delhi 110067, India

~Received 12 July 1999; revised manuscript received 28 March 2000!

The transverse current correlations are analyzed using the formalism of extended mode coupling theory. The
undercooled liquid can sustain shear waves up to a minimum wave number. With the increase of density this
wave number decreases, indicating a growing length scale that is related to the dynamics. The speed of the
propagating shear waves goes to zero approaching a critical wave number. The maximum wavelength shows
an initial enhancement approaching the mode coupling transition and finally grows at a slower rate as the sharp
transition is cut off.

PACS number~s!: 64.60.Cn, 64.70.Pf, 47.35.1i
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The solidlike nature of a supercooled liquid is often e
pressed in terms of a finite shear modulus. Thus, whil
low-density fluid cannot sustain a shear stress, in an ela
solid the stress is proportional to the strain produced. T
viscoelastic response of the supercooled liquid is formula
in terms of a combination of the above two behaviors. Th
ries of the liquid state which only include short-time or u
correlated collisions@1,2# in a liquid therefore do not accoun
for the appearance of propagating shear waves. By formu
ing the the dynamics in a dense liquid in terms of t
memory function@3–5#, the propagating shear waves at lar
wave numbers are accounted for. More recent works@6# have
considered the problem of long-time tails similar to the wo
by Kirkpatrick @3# with inclusion of coupling to current cor
relations.

The memory effect accounts for the dynamic correlatio
that build up at high density and are expressed by the m
coupling terms. In recent years the self-consistent mode c
pling theory ~MCT! @7# for glassy relaxation has been pr
posed by considering the contribution to the transport co
ficients coming from the nonlinear coupling of collectiv
modes in a liquid. In the kinetic approach to glassy behav
the widely studied model is obtained from a self-consist
mode coupling approximation of the memory function
terms of slowly decaying density fluctuations. This mod
undergoes a dynamic transition to an ideal glassy phase
yond a critical density while the structure of the liquid do
not undergo any drastic change. In the ideal glassy phase
density correlation function freezes to a nonzero long-ti
limit. However, a study of the equations of nonlinear fluc
ating hydrodynamics@8# shows that the dynamic feedbac
mechanism causing a divergence of the viscosity is cut of
a result of the coupling of density fluctuations to current in
compressible fluid. In these so-called extended mode c
pling models@8–11# it has been shown that the dynam
transition is removed. The relaxation times keeps increas
but the density correlation function finally decays to zero
the long-time limit. The ideal glassy phase predicted with
the simple mode coupling approximation has solidlike pro
erties and it can support propagating shear waves a
length scales. In a recent work@12# the behavior of propa-
gating shear waves in the supercooled liquid was analy
taking into account the proper structural effects at high d
PRE 621063-651X/2000/62~2!/1670~4!/$15.00
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sity, through a mode coupling calculation. The extent
slowing down in relaxation near the instability is determin
from the wave vector dependence of the mode coupling c
tributions in the theory. It was shown that the longest wa
length for the propagating shear waves that the underco
liquid can sustain grows with density. This length sca
which is linked to a characteristic solidlike behavior of th
supercooled liquid, follows a power law divergence with
exponent of 1.2 in the vicinity of the ideal glass transitio
density. With the proper approximation to the memory fun
tion in terms of the density correlation function comput
from extended mode coupling models, the divergence of
characteristic length scale is removed.

In the formalism of the mode coupling theories the de
sity correlation function is the key quantity in terms of whic
the glassy relaxation is formulated. The Laplace transform
the density correlation functionc(qW ,t) normalized with re-
spect to its equal time value is defined as

c~qW ,z!52 i E
0

`

dt eiztc~q,t ! ~1!

and can be expressed in the form@8#

c~qW ,z!5
z1 iGR~q,z!

z22Vq
21 iGR~q,z!@z1 ig~q,z!#

. ~2!

Vq5q/AbmS(q) corresponds to a characteristic micr
scopic frequency for the liquid-state dynamics whereb is the
Boltzmann factor andm is the mass of the fluid particles
The corresponding memory function, the generalized lon
tudinal viscosityGR(q,z)5G0(q)1Gmc(q,z), has a partG0
related to bare or short-time dynamics with uncorrelated c
lisions and the mode coupling contributionGmc signifying
the correlated motion in the dense liquid:

Gmc~q,t !5E VL@kW ,kW1#c~kW ,t !c~kW1 ,t !
dkW

~2p!3
, ~3!

where kW15qW 2kW . The vertex function for the longitudina
viscosity is given by
1670 ©2000 The American Physical Society
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VL@kW ,kW1#5
n

2bm
@ukc~k!1u1k1c~k1!#2S~k!S~k1!, ~4!

whereu5q̂• k̂ and u15q̂•k1̂, the dot product of the corre
sponding unit vectors. Herec(k) is the direct correlation
function related to the static structure factorS(k) through the
Ornstein-Zernike relationS(k)5@12nc(k)#21. The quan-
tity g(q,z) on the right-hand side~RHS! of Eq. ~2! plays a
crucial role in determining the asymptotic dynamics. Ifg is
ignored, the simple mode coupling approximation for t
memory function obtains a sharp transition to an ideal gla
phase beyond a critical density, with the density correlat
function developing a 1/z pole. This model has been widel
studied @13# for the dynamics of supercooled liquids an
involves a transition to an ideal glassy phase beyond a c
cal density. However, with the presence ofg at high density
whenGR gets large, the pole shifts to 1/(z1 ig). It has been
demonstrated@8,10# that in the small-q and -v limit, g
;q2. This gives rise to a diffusive decay of the dens
correlation restoring ergodicity over the longest time scale
formal expression was obtained in Ref.@8# for the quantityg
using nonperturbative analysis. For the calculations here
use the one-loop results in the simplest form, in the smalq,
v limit:

g~q,t !5gq
2E dkW

~2p!3 S~k!S~k1!
u

k Fu

k
1

u1

k1
G ċ~k1 ,t !ċ~kW ,t !.

~5!

ċ refers to the time derivative of the functionc(q,t). Here

gq
25

1

2n S Vq

v0
D 2

,

wherev0 is the thermal speed of the particles. Here the c
plings to the transverse correlations are ignored to keep
analysis simple. The quantityg provides a mechanism tha
cuts off the sharp transition of the fluid to an ideal glas
phase. To leading order it is ofO(kBT) and is an effect of
the coupling of the density and current correlations in
compressible fluid. The shear relaxation in a fluid is stud
by analyzing the transverse autocorrelation functionf(q,t)
which is expressed in the Laplace transformed form

f~qW ,z!5
1

z1 ihR~q,z!
~6!

in terms of the memory function or the generalized sh
viscosity hR(q,z)5h01hmc(q,z), where h0 is the short-
time or bare part arising from uncorrelated binary collisi
of the fluid particles. For the dense fluid at small enou
length scales~i.e., large enoughq) the memory effects are
important; a damped oscillatory mode the shear wave@14,15#
is obtained. The mode coupling contribution forhmc takes
into account the cooperative effects in the dense fluids
has contributions from the coupling of the hydrodynam
fields. In the supercooled liquid the density fluctuations
assumed to be dominant andhmc is expressed self
consistently in terms of the density autocorrelation functio

The time evolution for the transverse correlation functi
f(q,t) is solved forq small, with a self-consistent evalua
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tion of the density correlation functionc(qW ,t) from Eq. ~2!.
In a simplified model where the quantityg is ignored, the
density autocorrelation function freezes@7# to a nonzero
value for densities above a critical valuenc . For a hard
sphere system whose static structure factor is approxim
by the Percus-Yevick~PY! @16# solution with the Verlet-
Weiss ~VW! @17# correction this takes place at a critic
value of the packing fractionh* 50.525. We focus here ou
study on the densities above the critical density correspo
ing to the dynamic transition to the ideal glassy phase.
these densities in the simple MCT there will be comple
freezing at all length scales. To investigate the nature of
shear waves at small wave numbers we compute the mem
function in terms of the density correlation function that
obtained here from the extended MCT. For analyzing
nature of the shear waves the small wave vector region
comes more important with increasing density. However
computation of the mode coupling integrals the large wa
vector part contributes.g(q,t) is approximated here by th
result given in Eq.~5! obtained both in Refs.@8# and @18#.
Since the value ofc(q̇,t in the initial times is mainly con-
tributing to the cutoff function, we compute theg from the
simple model without the cutoff mechanism and use its va
in the hydrodynamic limit to compute the final decay of t
density correlation function. For smallqs<1, the cutoff
part q2g;q2. To compute the transverse autocorrelati
function for different wave numbers we use the stand
form @19,20# for the mode coupling contribution to the gen
eralized shear viscosity or the memory function:

hmc~q,t !5
n

2bmE dkW

~2p!3 @c~k!2c~kW1!#2k2

3~12u2!c~kW1 ,t !c~kW ,t !. ~7!

For the small wave vector an expansion inq is used to com-
pute the memory function that is used in the calculation
the transverse autocorrelation function for different values
the wave number. From the study of the dynamics a w
numberq0 is identified such that withq.q0 the relaxation
of transverse current correlation is oscillatory, indicating th
the system sustains shear waves up to this wave number
wave vectors smaller thanq0 the decay of the correlation
function is no longer oscillatory andf never goes negative
In order to make a quantitative estimate of the crosso
wave number we have adopted the procedure outlined for
calculation with the simplified model@12#, namely, extrapo-
lating to zero the inverse of the timet0 for which the trans-
verse autocorrelation function goes negative at a given w
vector q. In Fig. 1, we show the behavior of the speed
shear waves vs wave vector for reduced densityns3

51.08. The unit chosen is in terms of the Enskog timetE
@15# and the hard sphere diameters. As the critical wave
number is approached the speed of the shear waves go
zero. For large wave number the speed of the shear w
reaches its hydrodynamic value which is equal toAG` /r
whereG` is the high-frequency limit of the shear modulu
Using this limiting value of the shear wave speed we c
thus compute the shear modulus@21# with the only input as
the structure of the liquid. This is related@5# to the short-time
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value of the memory function. In Fig. 2 the wave vect
dependence of cutoff functiong(q,0)/q2 is shown for the
small wave vector rangeqs<1 for the packing fractionh
50.57. The constant value refers to the diffusive mode in
hydrodynamic limit. In Fig. 3 the variation ofq0 with pack-
ing fraction h(5pns3/6) is shown for a system of har
spheres. As the critical packing fraction 0.525 is approac
the observed length scaleL0 tends to diverge, withq0 be-
coming small. However, as the density is further increa
the approach to the sharp transition is cut off and a wea
enhancement takes place.

The solidlike nature of undercooled liquids has also be
observed from transverse sound modes@22#. Mountain has
observed@23# a similar behavior of propagating shear wav
from molecular dynamics simulations of fragile liquid
which are also the systems where the mode coupling mo
apply. This length scale of maximum wavelength for prop
gating shear waves observed from molecular dynamics si
lations grows indefinitely approaching the glass transition
the present work we have demonstrated that for the s
consistent mode coupling model such a growing length s

FIG. 1. The speed of shear wave in units ofs/tE ~see text! vs
wave numberks at densityns351.08.

FIG. 2. The cutoff functiong(q,0)/q2 in units of s2/tE on a
log10 scale vs wave vectorqs.
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can be identified and it shows a change in its growth patt
around the mode coupling instability. For smallq a value of
the quantityg has been obtained through a proper analysis
the nonlinear fluctuating hydrodynamics equations and
extrapolate this form to a largeq with simple approximations
to estimate it. The present version of extended MCT uses
hydrodynamic form and is being used to study the nature
the shear waves at small wave numbers. The dynamic in
bility that has been called the ideal glass transition is spec
to the self-consistent mode coupling model. In a recent w
it has been argued that the final relaxation of the den
correlation isq independent. The feedback mechanism
sponsible for the dynamic transition isq independent—
however, the exact density at which the mode coupling tr
sition occurs is determined by the mode coupling integr
and hence the structure factor of the supercooled liquid
is used an input in the theory. In Eq.~2! when the cutoff
function g is ignored, for smallq, if the viscosity is large
enough so thatz!D(0)q2, the central viscoelastic peak wi
have aq-independent width given byD21(0) whereD is the
viscosity divided by the density factor. However, when t
mode coupling equations are solved with a realistic struct
factor one sees that this width goes to zero ath* 50.514@7#
with a Percus-Yevick structure factor. Thus the presence
the g term is crucial in the ergodicity restoring process ov
the longest time scale. It was shown in Ref.@8# that to lead-
ing order inq, g;q2, giving rise to a diffusive process in th
supercooled liquid. We would also like to point out here th
g going to zero withq approaching zero is also require
from hydrodynamics. The same result@18# was also obtained
in Ref. @10#. Beyond the hydrodynamic regime, the cent
peak has a width independent ofq, commonly called the
Mountain peak@24#, which is highly non-Lorentzian, reflect
faster processes, and does not play a crucial role here.
coupling to thermal fluctuations is also ignored in the form
lation with the presumption that the density fluctuations
the key quantity. We have also not taken into account
coupling to other slow modes that arises in the glass form
liquids due to the complexity of molecules or properties
lated to orientational degrees of freedom@25# or an explicit
account of hopping processes@11#. While there can be a

FIG. 3. The wave numberq0 ~defined in text! in units ofs21 vs
the packing fractionh.
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more involved formalism of the mode coupling terms, t
present work demonstrates that the simplest mode coup
terms with density fluctuations are crucial in understand
shear waves.

The change of the nature of the shear wave indicated
is reminiscent of what happens in a dense fluid@26,27# at
finite wave vectors when the propagating sound modes
come diffusive. Although in the latter case it is purely
structural effect, the change of the propagating modes
diffusive mode is qualitatively similar. In the present ca
the change in the nature of shear waves occurs as a res
the interplay between structure and dynamics. It is a
worth mentioning at this point that it will not be correct
simply relate this to very slow transverse sound modes n
wave vectors approaching the critical value. We have d
cussed here the shear mode from the transverse curren
relation functions for an isotropic liquid. In the case of tran
verse sound modes, on the other hand, one needs to di
really the transverse part of displacement fields introduce
extra slow modes or Goldstone modes@28#.
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In a viscoelastic theory@29# a phenomenological param
eter is introduced to describe a frequency-dependent s
viscosity and using a simple exponential time dependenc
the transport coefficient one can obtain propagating sh
waves in terms of this relaxation parameter. On the ot
hand, we have considered a theoretical model which is
tained from first principles. It includes as an input only t
static structure factor of theliquid. An identical model has
already been used earlier by the present author to investi
the nature of the supercooled liquid dynamics. The grow
length scale follows very naturally from the feedback of de
sity fluctuations andwithout any input parameters bein
used. We have used the extended mode coupling mode
investigate the wave vector dependence in the elastic
sponse of the supercooled liquid. The length scale is rela
to the dynamic behavior of the system and is representa
of the distance over which the supercooled liquid does h
enough structure to sustain propagating shear waves.

The author acknowledges support from NSF Project N
INT9615212.
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